Thursday, July 9, 2015

Presenting Bakhtiari Uniparental Marker Data [Original Work]

Introduction
Bakhtiari people (Google Search)
The Bakhtiari people are one of Iran's ethnic minorities. Inhabiting the Iranian plateau's southwestern portion, the Bakhtiari traditionally maintained a hierarchical social structure with a genealogical basis (with organisations or positions including rish safids, kalantars, khans and ilkhani) [1]. Historically, the Bakhtiari have played a role in several pivotal events leading up to the formation of the modern Iranian state [2].

In recent years, the Bakhtiaris have received additional attention in the literature with respect to ancestry. This has been achieved predominantly via uniparental markers (Y-DNA and mtDNA) and coincides with work addressing the genetic origins of other ethnic minorities in Iran. For instance, in 2012, Grugni et al. expanded our understanding of Iranian Y-DNA across the country through sampling almost 1,000 unrelated men across 15 distinct ethnic groups (previous entry).

In spite of such developments, however, the Bakhtiari have not received much attention in either the genetic genealogy community or the literature. This entry attempts to explore the available data and arrive at a stable set of results for this group.

Method
Khuzestan province, Iran (Wikipedia)

Search engines were limited to PubMed and Google Translate. Search terms included "Bakhtiari", "Y-DNA", "Y-Chromosome", "mtDNA", "mitochondrial", "STR", "SNP", "HVR" and "Iran". No limit was placed on publication date. All mtDNA and Y-DNA data was compiled. Where Y-STRs are presented, these were run through Vadim Urasin's YPredictor (v1.0.3 offline version). A 70% prediction strength threshold was implemented. If the resulting data is sparse, novel ways of consolidating the information will have to be devised and explained during the course of this entry.

Search Outcomes
Three studies were found to contain Bakhtiari uniparental data, with one partially covering Bakhtiari mtDNA (Derenko et al. 2013 [3]) and two for Y-DNA (Nasidze et al. 2008 [4], Roewer et al. 2009 [5]). The Bakhtiari populations featured mostly reside in Izeh, Khuzestan province, Iran [3-5] with a single sample coming from Lurestan province, Iran [4].

mtDNA Results
Derenko et al. featured only two Bakhtiari samples. One belonged to mtDNA H*, which was also observed in several Persian (Kerman province) and Qashqai samples, alongside a single Armenian. [3] The only other sample was mtDNA U2d2, also found in a single Persian (Kerman province). The authors noted that the combined frequency of mtDNA's U2c and U2d in Iran were highest among the Persians nationwide (approaching 10%) [3]. However, given the absence of additional samples, no reasonable conclusions can be drawn from these results.

Nasidze et al. provides both frequency and HVR1 derived variance data on the Bakhtiari and Ahwazi Arab populations [4]. The Bakhtiari appear to chiefly belong to mtDNA haplogroups N, U, H, T and J (below).

mtDNA Frequency Data from Khuzestan province, Iran {Nasidze et al. 2008)

Unfortunately, further information on subclade breakdown is not provided. However, as concluded by the authors and is evident through frequency data, the mtDNA profile of the Bakhtiari is almost identical to the Ahwazi Arab sample. Additionally, Nasidze et al. note "considerable sharing of HV[R]1 sequences" between these two groups [4]. In tandem with the inferences described above through Derenko et al., it appears that significant matrilineal marker overlap does exists across the Iranian plateau.

Y-DNA Results
Nasidze et al. first published data on 53 unrelated Bakhtiari men [4]. Due to substandard Y-SNP genotyping, the only conclusions that may broadly be discerned is the Bakhtiari chiefly belong to Y-DNA haplogroups J2-M172 (25%) and G-M201 (15%) (Data Sink). In this respect, these results cannot give observers a reliable indication of the Bakhtiari Y-DNA profile. Roewer et al.'s data indicates that some number of Bakhtiari do share the same core 17 STR haplotypes among one another (e.g. J2a4, T*)  but do not with any other samples across the country [5].

One "quick and dirty" way of addressing this problem is by using the YFiler (17 STR) Bakhtiari haplotypes (Data Sink) from Roewer et al. to "recharacterise" the Nasidze data. This is deemed the most suitable option for two reasons:
1) Nasidze et al. has an adequate sample size (n=53) but inadequate Y-SNP genotype selection
2) Roewer et al. has an inadequate sample size (n=18) and no confirmed Y-SNP testing, but the YPredictor data should provide reasonable subclade determination with a 70% probability threshold in place

"Recharacterisation" is achieved by expressing the Nasidze et al. data by the predicted subclade information provided by the Roewer et al. SNP predictions proportionally. For example, Nasidze et al. found "DE-YAP" at 8%, with the Roewer et al. predicted results showing 5.6% each for "DE*" and "E1b1b1". As both these subclades are contained within the DE-YAP node, the original value is recharacterised as DE 4% and E1b1b1 4%. The outcome is presented numerically (Data Sink) and demonstrated below (values rounded down to fit to 100%):



Y-DNA J2a4 constitutes the largest subclade (22.1%), with H (10.8%), R1a1a (8.9%) and T* (8.5%) following. The results imply considerable Y-SNP diversity within the Izeh Bakhtiari.

These results are somewhat at odds with that suggested by the Roewer et al. figures, particularly the frequency of Y-DNA J2-M172 (50% in Roewer et al. vs. 25% in Nasidze et al.). The most likely basis for this is sampling bias, given the former only tested for 18 individuals. It should be noted that Y-DNA J-12f2 has been documented to have a major (>60%) presence in Southwestern Iran (Quintana-Murci et al. 2001) with the majority of this likely being represented by downstream J2-M172 subclades (as per Grugni et al. 2012). It is therefore plausible for some Bakhtiari groups to yield exceptionally high frequencies of Y-DNA J2-M172 (likely J2a4 subclade) with future testing. The breakdown shown above is also broadly in line with past data from Southwestern Iran (Grugni et al. 2012).

It must be cautioned that literal interpretation of these results (both subclade breakdown and numbers) are not advised due to the inaccuracies brought by the "recharacterisation" and the lack of Y-SNP confirmation in Roewer et al.

It should also be emphasised that, as a tribal group, the Bakhtiari have most likely undergone genetic drift in their uniparental markers over time. As such, the finding of ~10% Y-DNA H is not completely surprising. Whether these values will be substantiated in future work is an open question.

Conclusion
The current evidence does suggest that the Bakhtiari closely resemble and share heritage with their immediate neighbours matrilineally, resting upon a backdrop of some common mtDNA diversity across the Iranian plateau. Inferences beyond this point will fall towards the realm of speculation.

The situation appears somewhat inverted on the Y-DNA side, where non-existent Y-STR haplotype sharing is observed with other groups in the Iranian plateau. The "recharacterised" data gives us an approximate idea of what the Bakhtiari Y-DNA profile should look like if Nasidze et al. used a better Y-SNP genotype panel.

Other ethnic minorities in Iran have received consistent attention in this respect, such as the neighbouring Qashqai and Lurs (Farjadian et al. 2011). The paucity in Bakhtiari uniparental marker data indicates this is very much an area that needs immediate attention. An initial first direction for researchers is to sample at least 50 unrelated individuals from Izeh using a more conventional Y-SNP genotype panel. Additional clarity will be gained by testing further areas, as well as reconciling the Bakhtiari tribal structure with these outcomes.

Acknowledgements
A very special thanks to the user "J Man" from Anthrogenica for bringing this interesting topic to my attention.

[Edit 10/07/2015]: I have also learned while researching this topic that Dr. Ivan Nasidze unfortunately passed away in 2012. His work served as an important early foundation towards understanding the genetic constitution of Caucasian and Iranian populations. May he rest in peace.

References
1. Bakhtiari. Last Accessed 25/06/2015: http://www.everyculture.com/Africa-Middle-East/Bakhtiari.html

2. Study of the Qajar government policy at the case of Household Bakhtiari. Last Accessed 6/07/2015: http://waliaj.com/wp-content/2014/Issue%201,%202014/26%202014-30-1-pp.124-127.pdf 

3. Derenko M, Malyarchuk B, Bahmanimehr A, Denisova G, Perkova M, Farjadian S. Complete mitochondrial DNA diversity in Iranians. PLoS One. 2013 Nov 14;8(11):e80673. doi: 10.1371/journal.pone.0080673. eCollection 2013.

4. Nasidze I, Quinque D, Rahmani M, Alemohamad SA, Stoneking M. Close genetic relationship between Semitic-speaking and Indo-European-speaking groups in Iran. Ann Hum Genet. 2008 Mar;72(Pt 2):241-52. doi: 10.1111/j.1469-1809.2007.00413.x. Epub 2008 Jan 20.

5. Roewer L, Willuweit S, Stoneking M, Nasidze I. A Y-STR database of Iranian and Azerbaijanian minority populations. Forensic Sci Int Genet. 2009 Dec;4(1):e53-5. doi: 10.1016/j.fsigen.2009.05.002. Epub 2009 Jun 5.

5 comments:

  1. Very interesting article, thanks. Is there a way to obtain the STR haplotypes of the DE* samples? I would like to compare them to known DE* haplotypes to see if they are real DE*. Thanks in advance!

    ReplyDelete
    Replies
    1. Thanks for the comment. Email me at dmxx [underscore] dna [at] hotmail [dot] co [dot] uk and I'll see how I can support your research further.

      Delete
  2. The mt-dna data for NorthWestern Africa is incorrect, 80% L in Morocco and 75% among the Mozabites is simply incorrect, I think you have made some error while insering numbers.

    ReplyDelete
    Replies
    1. That image was from the original paper (Nasidze et al. 2008). Feel free to take this issue up with the original authors if those numbers (unrelated to this entry I will add) are a problem for you.

      Delete
  3. Where is the raw data of the Roewer 2011 n=18? Which is the 2011 paper from Roewer et al?

    https://docs.google.com/spreadsheets/d/1-T79mvrw19116pqIM15xVp_rcRC-fU8W5rtNYzIixA0/pubhtml

    Can you confirm sources? thanks

    ReplyDelete